Decreased neuronal death in Na+/H+ exchanger isoform 1-null mice after in vitro and in vivo ischemia.

نویسندگان

  • Jing Luo
  • Hai Chen
  • Douglas B Kintner
  • Gary E Shull
  • Dandan Sun
چکیده

Na+/H+ exchanger isoform 1 (NHE1) is a major acid extrusion mechanism after intracellular acidosis. We hypothesized that stimulation of NHE1 after cerebral ischemia contributes to the disruption of Na+ homeostasis and neuronal death. In the present study, expression of NHE1 was detected in cultured mouse cortical neurons. Three hours of oxygen and glucose deprivation (OGD) followed by 21 h of reoxygenation (REOX) led to 68 +/- 10% cell death. Inhibition of NHE1 with the potent inhibitor cariporide (HOE 642) or genetic ablation of NHE1 reduced OGD-induced cell death by approximately 40-50% (p < 0.05). In NHE1(+/+) neurons, OGD caused a twofold increase in [Na+]i, and 60 min REOX triggered a sevenfold increase. Genetic ablation of NHE1 or HOE 642 treatment had no effects on the OGD-mediated initial Na+(i) rise but reduced the second phase of Na+(i) rise by approximately 40-50%. In addition, 60 min REOX evoked a 1.5-fold increase in [Ca2+]i in NHE1(+/+) neurons, which was abolished by inhibition of either NHE1 or reverse-mode operation of Na+/Ca2+ exchange. OGD/REOX-mediated mitochondrial Ca2+ accumulation and cytochrome c release were attenuated by inhibition of NHE1 activity. In an in vivo focal ischemic model, 2 h of left middle cerebral artery occlusion followed by 24 h of reperfusion induced 84.8 +/- 8.0 mm3 infarction in NHE1(+/+) mice. NHE1(+/+) mice treated with HOE 642 or NHE1 heterozygous mice exhibited a approximately 33% decrease in infarct size (p < 0.05). These results imply that NHE1 activity disrupts Na+ and Ca2+ homeostasis and contributes to ischemic neuronal damage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ERK1/2-p90RSK-mediated phosphorylation of Na+/H+ exchanger isoform 1. A role in ischemic neuronal death.

The function and regulation of Na(+)/H(+) exchanger isoform 1 (NHE1) following cerebral ischemia are not well understood. In this study, we demonstrate that extracellular signal-related kinases (ERK1/2) play a role in stimulation of neuronal NHE1 following in vitro ischemia. NHE1 activity was significantly increased during 10-60 min reoxygenation (REOX) after 2-h oxygen and glucose deprivation ...

متن کامل

TRANSLATIONAL PHYSIOLOGY Increased tolerance to oxygen and glucose deprivation in astrocytes from Na /H exchanger isoform 1 null mice

Kintner, Douglas B., Gui Su, Brett Lenart, Andy J. Ballard, Jamie W. Meyer, Leong L. Ng, Gary E. Shull, and Dandan Sun. Increased tolerance to oxygen and glucose deprivation in astrocytes from Na /H exchanger isoform 1 null mice. Am J Physiol Cell Physiol 287: C12–C21, 2004. First published March 10, 2004; 10.1152/ajpcell.00560.2003.—The ubiquitously expressed Na /H exchanger isoform 1 (NHE1) f...

متن کامل

Effect of ischemic preconditioning on the expression of c-myb in the CA1 region of the gerbil hippocampus after ischemia/reperfusion injury

Objective(s): In the present study, we investigated the effect of ischemic preconditioning (IPC) on c-myb immunoreactivity as well as neuronal damage/death after a subsequent lethal transient ischemia in gerbils. Materials and Methods: IPC was subjected to a 2 min sublethal ischemia and a lethal transient ischemia was given 5 min transient ischemia. The animals in all of the groups were given ...

متن کامل

Difference in transient ischemia-induced neuronal damage and glucose transporter-1 immunoreactivity in the hippocampus between adult and young gerbils

Objective(s): The alteration of glucose transporters is closely related with the pathogenesis of brain edema. We compared neuronal damage/death in the hippocampus between adult and young gerbils following transient cerebral ischemia/reperfusion and changes of glucose transporter-1(GLUT-1)-immunoreactive microvessels in their ischemic hippocampal CA1 region. Materials and Methods: Transient cere...

متن کامل

Tiliacora triandra (Colebr.) Diels leaf extract enhances spatial learning and learning flexibility, and prevents dentate gyrus neuronal damage induced by cerebral ischemia/reperfusion injury in mice

Objective: The present study investigated the effects of a local Thai vegetable, Tiliacora triandra (Colebr.) Diels, also known as Yanang, against cerebral ischemia/reperfusion injury in mice. Materials and Methods: Thirty male ICR mice were divided into three experimental groups of BLCCAO + 10% Tween 80, BLCCAO + T. triandra 300 mg/kg, and BLCCAO + T. triandra 600 mg/kg. Cerebral ischemia/repe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 49  شماره 

صفحات  -

تاریخ انتشار 2005